BÖHLER UDDEHOLM

MATERIALIZING VISIONS

Bohler-Uddeholm M7 HIGH SPEED TOOL STEEL

General

High alloyed, molybdenum high speed steel with good wear resistance and high toughness. This grade has been manufactured to our internal specifications, and audited to meet our guidelines.

Typical	C	Si	Mn	Cr	Mo	V	W
analysis \%	1.02	0.4	0.3	3.8	8.6	1.9	1.8
Standard	AISI M7, DIN/EN 1.3348						
specification	Gold/White/Yellow						
Color code							

Applications

Taps, twist drills, reamers, milling tools, broaches, cold extrusion dies.

Hot Forming
FORGING
$1650-2010^{\circ} \mathrm{F}\left(900-1100^{\circ} \mathrm{C}\right)$, afterwards, slow cooling in furnace or blanketed with thermo-insulating material.

Heat treatment

ANNEALING

1420 to $1545^{\circ} \mathrm{F}\left(770\right.$ to $840^{\circ} \mathrm{C}$), controlled slow cooling in furnace at 20 to $35^{\circ} \mathrm{F} / \mathrm{hr}$ (10 to $20^{\circ} \mathrm{C} / \mathrm{hr}$) to approximately $1110^{\circ} \mathrm{F}\left(600^{\circ} \mathrm{C}\right)$, followed by cooling in still air. Hardness after annealing 280 Brinell, maximum.

STRESS RELIEVING

To relieve stresses created by extensive machining or tooling with complex geometries. Heat in a neutral atmosphere for 1 to 2 hours after reaching a temperature of 1110 to $1200^{\circ} \mathrm{F}$ (600 to $650^{\circ} \mathrm{C}$), followed by slow cooling in the furnace.

HARDENING

Hardening temperature of 2000 to $2210^{\circ} \mathrm{F}\left(1170\right.$ to $1210^{\circ} \mathrm{C}$); quench in: oil, salt bath at 930 to $1020^{\circ} \mathrm{F}\left(500\right.$ to $550^{\circ} \mathrm{C}$), or vacuum. The upper temperature range should be used for parts of simple geometry, the lower range for more complex tooling. For cold work tooling, lower temperatures are of importance for improved toughness.

Preheat in multiple steps and equalize surface and core temperatures; for example: Step $1-1020^{\circ} \mathrm{F}\left(550^{\circ} \mathrm{C}\right)$, Step $2-1560^{\circ} \mathrm{F}\left(850^{\circ} \mathrm{C}\right)$, and Step $3-1920^{\circ} \mathrm{F}\left(1050^{\circ} \mathrm{C}\right)$ then to the appropriate hardening temperature. The third preheat is only required for complex geometries.

RECOMMENDED HOLDING TIME, FLUIDIZED BED, VACUUM OR ATMOSPHERE FURNACE

Note: Holding time = time at austenitizing temperature after the tool is fully heated through.

TOTAL SOAKING TIME IN A SALT BATH AFTER PRE-HEATING IN TWO STAGES AT $450^{\circ} \mathrm{C}\left(840^{\circ} \mathrm{F}\right)$ AND $850^{\circ} \mathrm{C}\left(1560^{\circ} \mathrm{F}\right)$

Tempering

Slowly and uniformly heat to the appropriate tempering temperature immediately after the hardening operation. Once the temperature of the tool has been equalized, a soaking period of one hour per inch (25 mm) of workpiece thickness is required, but not less than 2 hours. First and second tempers should be used to reach the desired hardness level, and the third selected for additional stress relief at $85-120^{\circ} \mathrm{F}(30$ to $50^{\circ} \mathrm{C}$) below the highest tempering temperature. Intermittent cooling, in air, between tempers is required for a minimum of 1 hour. Obtainable hardness of 64 to 66 HRC .

TEMPERING CHART

Hardening temperature: $2175^{\circ} \mathrm{F}\left(1190^{\circ} \mathrm{C}\right)$ Specimen size: square cross section 20 mm

Surface treatment

NITRIDING

Parts made from this steel may be nitrided via the plasma, gas or salt bath processes

Quantitative phase diagram

------Water cooling
-- - Oil cooling

- - - Air cooling

1Edge or face
2Core
3.....Jominy test: distance from end
A.... Austenite
B.... Bainite
M.... Martensite
P.... Pearlite

Lk... Ledeburite carbide
RA.. Retained austenite

Isothermal TTT curves

Typical	C	Si	Mn	P	S	Cr	Mo	Ni	V	W
analysis \%	0.96	0.33	0.33	0.021	0.008	3.92	8.79	0.12	2.04	2.09

Austenitizing temperature: $2174^{\circ} \mathrm{F}\left(1190^{\circ} \mathrm{C}\right)$ Holding time: 150 seconds

Properties

PHYSICAL DATA

Temperature	$68^{\circ} \mathrm{F}$ $\left(20^{\circ} \mathrm{C}\right)$
Density	
lbs/in ${ }^{3}$	
g/cm ${ }^{3}$	130
	8.30
Modulus of elasticity	
psi	31.4×10^{6}
$\mathrm{~N} / \mathrm{mm}^{2}$	217×10^{3}
Thermal conductivity	136
Btu in/(ft2$\left.{ }^{\circ} \mathrm{F}\right)$	19
W/m ${ }^{\circ} \mathrm{C}$	
	0.11
Specific heat	460
Btu/lb ${ }^{\circ} \mathrm{F}$	
$\mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}$	
Electrical Resistivity	25.6
$\mu o h m^{*}$ in	0.65

Thermal expansion between $68^{\circ} \mathrm{F} / 20^{\circ} \mathrm{C}$ and...			
Temperature		$10^{-6} \mathrm{~m} /(\mathrm{m} * \mathrm{~K})$	$10^{-6} \mathrm{in} / \mathrm{in}{ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$		
212	100	11.0	6.2
392	200	11.5	6.5
572	300	11.9	6.7
752	400	12.3	6.9
932	500	12.4	7.0
1112	600	12.5	7.0
1292	700	12.5	7.0

Machining

The cutting data below are to be considered as guiding values which must be adapted to existing local conditions

TURNING

Turning with carbide tipped tools
(condition annealed, average values)

Depth of Cut (a_{p}) inches mm	$\begin{gathered} 0.02 \text { to } 0.04 \\ 0.5 \text { to } 1 \end{gathered}$		$\begin{gathered} 0.04 \text { to } 0.16 \\ 1 \text { to } 4 \end{gathered}$		$\begin{gathered} 0.16 \text { to } 0.31 \\ 4 \text { to } 8 \end{gathered}$		over 0.31 over 8	
Feed (f_{z}) i.p.r. $\mathrm{mm} / \mathrm{rev}$	$\begin{gathered} 0.004 \text { to } 0.012 \\ 0.1 \text { to } 0.3 \end{gathered}$		$\begin{gathered} 0.008 \text { to } 0.016 \\ 0.2 \text { to } 0.4 \end{gathered}$		$\begin{gathered} 0.012 \text { to } 0.024 \\ 0.3 \text { to } 0.6 \end{gathered}$		$\begin{gathered} 0.020 \text { to } 0.060 \\ 0.5 \text { to } 1.5 \end{gathered}$	
ISO	P10, P20		P10, P20, M10		P30, M20		P30, P40	
Cutting Speed (v_{c}) Indexable Carbide Inserts (edge life 15 min) f.p.m. $\mathrm{m} / \mathrm{min}$	$\begin{aligned} & 495 \\ & 150 \end{aligned}$	$\begin{aligned} & 690 \\ & 210 \end{aligned}$	$\begin{gathered} 360 \\ 110 \end{gathered}$	$\begin{aligned} & 525 \\ & 160 \end{aligned}$	$\begin{gathered} 260 \\ 80 \text { t } \end{gathered}$			
Cutting Speed (v_{c}) Brazed Carbide Tipped Tools (edge life of 30 min) f.p.m. $\mathrm{m} / \mathrm{min}$	$\begin{aligned} & 360 \\ & 110 \end{aligned}$	$\begin{aligned} & 490 \\ & 150 \end{aligned}$	$\begin{gathered} 280 \\ 85 \end{gathered}$		$\begin{array}{r} 200 \\ 60 \end{array}$	$\begin{aligned} & 295 \\ & 90 \end{aligned}$		
Hardfaced Indexable Carbide Inserts (edge life 15 min) ISO P20 ISO P35	f.p.m to 690 to 460	m/min to 210 to 140	f.p.m. to 590 to 460	m/min to 180 to 140	f.p.m. to 430 to 330	m/min $\begin{array}{r} \text { to } 130 \\ \text { to } 100 \\ \hline \end{array}$	f.p.m. to 260 to 200	$\mathrm{m} / \mathrm{min}$ $\begin{array}{r} \text { to } 80 \\ \text { to } 60 \\ \hline \end{array}$
Cutting angles for brazed carbide tipped tools Clearance angle Rake angle Angle of inclination								

Turning with HSS

(parameters determined using Böhler S700 /1.3207 DIN)			
Depth of Cut (a_{p}) inches mm	$\begin{gathered} 0.02 \\ 0.5 \end{gathered}$	$\begin{gathered} 0.12 \\ 3 \end{gathered}$	$\begin{gathered} 0.24 \\ 6 \end{gathered}$
$\begin{aligned} & \text { Feed }\left(f_{z}\right) \\ & \text { i.p.r. } \\ & \mathrm{mm} / \mathrm{rev} \end{aligned}$	$\begin{gathered} 0.004 \\ 0.1 \end{gathered}$	$\begin{gathered} 0.016 \\ 0.4 \end{gathered}$	$\begin{gathered} 0.032 \\ 0.8 \end{gathered}$
Cutting Speed (v_{c}) Indexable Carbide Inserts (edge life 15 min) f.p.m. $\mathrm{m} / \mathrm{min}$	$\begin{gathered} 65 \text { to } 100 \\ 20 \text { to } 30 \end{gathered}$	$\begin{aligned} & 50 \text { to } 65 \\ & 15 \text { to } 20 \end{aligned}$	$\begin{aligned} & 33 \text { to } 60 \\ & 10 \text { to } 18 \end{aligned}$
Rake angle Clearance angle Angle of inclination	$\begin{gathered} 14^{\circ} \\ 8^{\circ} \\ -4^{\circ} \\ \hline \end{gathered}$	$\begin{array}{r} 14^{\circ} \\ 8^{\circ} \\ -4^{\circ} \\ \hline \end{array}$	$\begin{gathered} 14^{\circ} \\ 8^{\circ} \\ -4^{\circ} \\ \hline \end{gathered}$

MILLING

Milling with Carbide Tipped Cutters

Feed (f $\left.\mathrm{f}_{\mathrm{z}}\right)$	inch/tooth up to 0.008	mm/tooth up to 0.2	inch/tooth 0.008 to 0.016	$\mathrm{mm} / \mathrm{tooth}$ 0.2 to 0.4
Cutting Speed $\left(\mathrm{v}_{\mathrm{c}}\right)$	f.p.m.	330 to 490	100 to 150	200 to 360

DRILLING

Drilling with Carbide Tipped Tools

Drill Diameter	$\begin{gathered} 0.12 \text { to } 0.31 \\ \text { inches } \end{gathered}$	3 to 8 mm	$\begin{gathered} 0.31 \text { to } 0.79 \\ \text { inches } \end{gathered}$	8 to 20 mm	$\begin{aligned} & 0.79 \text { to } 1.57 \\ & \text { inches } \end{aligned}$	20 to 40 mm
Feed (f_{z})	$\begin{gathered} 0.0008 \text { to } \\ 0.002 \text { inches } \end{gathered}$	$\begin{gathered} 0.02 \text { to } \\ 0.05 \mathrm{~mm} / \mathrm{rev} \end{gathered}$	$\begin{gathered} 0.002 \text { to } \\ 0.005 \text { inches } \end{gathered}$	$\begin{gathered} 0.05 \text { to } 0.12 \\ \mathrm{~mm} / \mathrm{rev} \end{gathered}$	$\begin{gathered} 0.005 \text { to } \\ 0.007 \text { inches } \end{gathered}$	$\begin{gathered} 0.12 \text { to } 0.18 \\ \mathrm{~mm} / \mathrm{rev} \end{gathered}$
ISO - grade	K10		K10		K10	
Cutting Speed (v_{c})	$\begin{gathered} 115 \text { to } 165 \\ \text { f.p.m } \end{gathered}$	35 to 50 m/min	$\begin{gathered} 115 \text { to } 165 \\ \text { f.p.m. } \end{gathered}$	35 to 50 $\mathrm{m} / \mathrm{min}$	$\begin{gathered} 115 \text { to } 165 \\ \text { f.p.m } \end{gathered}$	35 to 50 $\mathrm{m} / \mathrm{min}$
Top angle	115 to 120°		115 to 120°		115 to 120°	
Clearance Angle	5°		5°		5°	

Electrical-discharge machining-EDM

If EDM is performed in the hardened and tempered condition, the tool should then be given stress temper at a temperature that is at least $50^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$ below the lowest tempering temperature.

