BÖHLER UDDEHOLM

MATERIALIZING VISIONS

Bohler-Uddeholm M7 HIGH SPEED TOOL STEEL

General

High alloyed, molybdenum high speed steel with good wear resistance and high toughness. This grade has been manufactured to our internal specifications, and audited to meet our guidelines.

Typical analysis %	C 1.02	Si 0.4	Mn 0.3	Cr 3.8	Mo 8.6	V 1.9	W 1.8	
Standard specification	AISI M7, DIN/EN 1.3348							
Color code	Gold/White/Yellow							

Applications

Taps, twist drills, reamers, milling tools, broaches, cold extrusion dies.

Hot Forming

FORGING

 $1650-2010^\circ F$ (900 - 1100°C), afterwards, slow cooling in furnace or blanketed with thermo-insulating material.

Heat treatment

ANNEALING

1420 to 1545°F (770 to 840°C), controlled slow cooling in furnace at 20 to 35°F/hr (10 to 20°C/hr) to approximately 1110°F (600°C), followed by cooling in still air. Hardness after annealing 280 Brinell, maximum.

STRESS RELIEVING

To relieve stresses created by extensive machining or tooling with complex geometries. Heat in a neutral atmosphere for 1 to 2 hours after reaching a temperature of 1110 to 1200°F (600 to 650°C), followed by slow cooling in the furnace.

HARDENING

Hardening temperature of 2000 to 2210°F (1170 to 1210°C); quench in: oil, salt bath at 930 to 1020°F (500 to 550°C), or vacuum. The upper temperature range should be used for parts of simple geometry, the lower range for more complex tooling. For cold work tooling, lower temperatures are of importance for improved toughness. Preheat in multiple steps and equalize surface and core temperatures; for example: Step 1 - $1020^{\circ}F$ (550°C), Step 2 - $1560^{\circ}F$ (850°C), and Step 3 - $1920^{\circ}F$ (1050°C) then to the appropriate hardening temperature. The third preheat is only required for complex geometries.

RECOMMENDED HOLDING TIME, FLUIDIZED BED, VACUUM OR ATMOSPHERE FURNACE

Note: Holding time = time at austenitizing temperature after the tool is fully heated through.

TOTAL SOAKING TIME IN A SALT BATH AFTER PRE-HEATING IN TWO STAGES AT 450°C (840°F) AND 850°C (1560°F)

Tempering

Slowly and uniformly heat to the appropriate tempering temperature immediately after the hardening operation. Once the temperature of the tool has been equalized, a soaking period of one hour per inch (25 mm) of workpiece thickness is required, but not less than 2 hours. First and second tempers should be used to reach the desired hardness level, and the third selected for additional stress relief at 85 - 120°F (30 to 50°C) below the highest tempering temperature. Intermittent cooling, in air, between tempers is required for a minimum of 1 hour. Obtainable hardness of 64 to 66 HRC.

TEMPERING CHART

Hardening temperature: $2175^{\circ}F$ (1190°C) Specimen size: square cross section 20 mm

Surface treatment

NITRIDING

Parts made from this steel may be nitrided via the plasma, gas or salt bath processes

Quantitative phase diagram

Phase percentages

-----Water cooling - - - Oil cooling - · - Air cooling 1Edge or face 2Core 3.....Jominy test: distance from end

> A.... Austenite B.... Bainite M.... Martensite P.... Pearlite Lk... Ledeburite carbide RA.. Retained austenite

Isothermal TTT curves

Typical	С	Si	Mn	Р	S	Cr	Мо	Ni	V	W
analysis %	0.96	0.33	0.33	0.021	0.008	3.92	8.79	0.12	2.04	2.09

Austenitizing temperature: 2174°F (1190°C) Holding time: 150 seconds

Properties

PHYSICAL DATA

Temperature	68°F (20°C)
Density Ibs/in ³ g/cm ³	130 8.30
Modulus of elasticity psi N/mm²	31.4 x 10 ⁶ 217 x 10 ³
Thermal conductivity Btu in/(ft²h°F) W/m °C	136 19
Specific heat Btu/lb °F J/kg °C	0.11 460
Electrical Resistivity µohm*in ohm*mm²/m	25.6 0.65

Thermal expansion between 68°F/ 20°C and							
Tempe	erature	10⁻ ⁶ m/(m*K)	10⁻ੰ in/in °F				
°F	°C						
212	100	11.0	6.2				
392	200	11.5	6.5				
572	300	11.9	6.7				
752	400	12.3	6.9				
932	500	12.4	7.0				
1112	600	12.5	7.0				
1292	700	12.5	7.0				

Machining

The cutting data below are to be considered as guiding values which must be adapted to existing local conditions

TURNING

Turning with carbide tipped tools (condition annealed, average values)

r									
Depth of Cut (a _p) inches mm	0.02 to 0.04 0.5 to 1			0.04 to 0.16 1 to 4		0.16 to 0.31 4 to 8		over 0.31 over 8	
Feed (f _z) i.p.r. mm/rev	0.004 to 0.012 0.1 to 0.3		0.008 to 0.016 0.2 to 0.4		0.012 to 0.024 0.3 to 0.6		0.020 to 0.060 0.5 to 1.5		
ISO	P10, P20		P10, P20, M10		P30, M20		P30, P40		
Cutting Speed (v _c) Indexable Carbide Inserts (edge life 15 min) f.p.m. m/min	495 to 690 150 to 210		1	to 525 o 160	1	o 360 o 110	150 to 230 45 to 70		
Cutting Speed (v _c) Brazed Carbide Tipped Tools (edge life of 30 min) f.p.m. m/min	360 to 490 110 to 150		280 to 440 85 to 135		200 to 295 60 to 90		115 to 230 35 to 70		
Hardfaced Indexable Carbide Inserts (edge life 15 min) ISO P20 ISO P35	f.p.m to 690 to 460	m/min to 210 to 140	f.p.m. to 590 to 460	m/min to 180 to 140	f.p.m. to 430 to 330	m/min to 130 to 100	f.p.m. to 260 to 200	m/min to 80 to 60	
Cutting angles for brazed carbide tipped tools Clearance angle Rake angle Angle of inclination	6 to 8° 6 to 12° 0°		6 to 8° 6 to 12° -4°		6 to 8° 6 to 12° -4°		6 to 8° 6 to 12° -4°		

Turning with HSS

(parameters determined using Böhler S700 /1.3207 DIN)							
Depth of Cut (a _p) inches mm	0.02 0.5	0.12 3	0.24 6				
Feed (f _z) i.p.r. mm/rev	0.004 0.1	0.016 0.4	0.032 0.8				
Cutting Speed (v _c) Indexable Carbide Inserts (edge life 15 min) f.p.m. m/min	65 to 100 20 to 30	50 to 65 15 to 20	33 to 60 10 to 18				
Rake angle Clearance angle Angle of inclination	14° 8° -4°	14° 8° -4°	14° 8° -4°				

MILLING

Milling with Carbide Tipped Cutters

Feed (f _z)	inch/tooth	mm/tooth	inch/tooth	mm/tooth	
	up to 0.008	up to 0.2	0.008 to 0.016	0.2 to 0.4	
Cutting Speed (v _c)	f.p.m.	m/min	f.p.m.	m/min	
ISO P25	330 to 490	100 to 150	200 to 360	60 to 110	
ISO P40	200 to 330	60 to 100	130 to 230	40 to 70	
ISO P35	280 to 425	85 to 130			

٦

DRILLING

Drilling with Carbide Tipped Tools

Drill Diameter	0.12 to 0.31 inches	3 to 8 mm	0.31 to 0.79 inches	8 to 20 mm	0.79 to 1.57 inches	20 to 40 mm	
Feed (f _z)	0.0008 to 0.002 inches	0.02 to 0.05 mm/rev	0.002 to 0.005 inches	0.05 to 0.12 mm/rev	0.005 to 0.007 inches	0.12 to 0.18 mm/rev	
ISO - grade	K10		K	10	K10		
Cutting Speed (v_c)	115 to 165 f.p.m	35 to 50 m/min	115 to 165 f.p.m.	35 to 50 m/min	115 to 165 f.p.m	35 to 50 m/min	
Top angle	115 to 120°		115 to 120°		115 to 120°		
Clearance Angle	5°		5°		5°		

Electrical-discharge machining–EDM

If EDM is performed in the hardened and tempered condition, the tool should then be given stress temper at a temperature that is at least 50°F (25°C) below the lowest tempering temperature.

BOHLER-UDDEHOLM CORPORATION 2505 Millennium Drive, Elgin, IL 60124 www.bucorp.com | 1-800-638-2520 | info@bucorp.com The Steel Store 1-877-783-3555

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose. The latest revised edition of this brochure is the English version, which is always published on our web site www.bucorp.com Edition 1, 08.2013